If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+5x-22=0
a = 6; b = 5; c = -22;
Δ = b2-4ac
Δ = 52-4·6·(-22)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{553}}{2*6}=\frac{-5-\sqrt{553}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{553}}{2*6}=\frac{-5+\sqrt{553}}{12} $
| n^2-n-4=0 | | |1/3x-6|+7=10 | | K+8=-3k | | 50+2x=200 | | 0.14(y-6)+0.08y=0.02-0.03(50) | | x*0.5=14.92 | | 15(8x-7)=5x-3 | | 18x+2x-14x-3x=15 | | 125m-100m43425=45000-200m | | (x-9)^2/3=5 | | -5(3t-2)+6t=7t-5 | | 5(1+x)=5x+1 | | -7(x+4)-12=14+2 | | 4^(x-1)=32^(3x) | | 4/x-4=3+x/x-4 | | t.2+5=8 | | x+5+10+x+6=30 | | x2+(x+2)^2=168^2 | | 24x^2+52x+24=90 | | 10-5v=-6v | | 4^x=3+18(4^-x) | | 5x²+1=6x | | 6(5y-9)=12 | | 4^x=3+18(4^-1) | | U+3u=12 | | 4/3m=-28 | | 9-4z=23 | | 5/2x-5=-5/3x-3/2 | | 3x-40/3x+30=14.50 | | 17w-9w=24 | | 9+t12=-3 | | 8x-1=6.3 |